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Abstract 

Background: A priority for conservation is the identification of endemic populations. We developed microsatellite 
markers for common raven (Corvus corax), a bird species with a Holarctic distribution, to identify and assess endemic 
populations in Alaska.

Results: From a total of 50 microsatellite loci, we isolated and characterized 15 loci. Eight of these loci were poly-
morphic and readily scoreable. Eighteen to 20 common ravens from Fairbanks, Alaska were genotyped showing the 
following variability: 3–8 alleles per locus, 0.25–0.80 observed heterozygosity (Ho), and 0.30–0.80 expected heterozy-
gosity (He). All loci were in Hardy–Weinberg equilibrium and linkage equilibrium and many loci amplified and were 
polymorphic in related taxa.

Conclusions: These loci will be used to identify endemic populations of common raven and assess their genetic 
diversity and connectivity.
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Findings
Common raven (Corvus corax) is a widespread, Holarc-
tic bird that is listed as least concern on the IUCN Red 
List of Threatened Species (http://www.iucnredlist.org/
search). Although common ravens in Alaska are not mor-
phologically diverse (2 subspecies) [1], genetic assess-
ments using mitochondrial DNA markers have shown 
differences among lineages [2] and have suggested that 
isolated, endemic populations are found in the Aleutian 
Islands of Alaska [3]. Island populations were possibly 
isolated in glacial refugia as has been suggested in other 
studies of Aleutian landbirds [3–6]. Alternatively, popu-
lations might be post-glacial in origin having colonized 

after the last glacial maximum (~15,000 ybp) [7]. Given 
the recent timing of these events, a quickly evolving 
molecular marker is needed to assess the genetic diver-
sity of populations, connectivity among populations, and 
to understand the history of ravens throughout the Hol-
arctic. We developed eight microsatellite loci that will be 
used to assess population structure, rates of gene flow, 
colonization history, and to identify isolated populations 
of common raven.

Total genomic DNA was extracted from the muscle tis-
sue of two common ravens from Alaska using a QiAamp 
DNA Mini Kit (Qiagen, Valencia, CA). The protocols of 
Glenn and Schable [8] and Katzinel et  al. [9] were used 
to isolate microsatellite loci. Briefly, restriction enzymes 
were used to digest DNA, adapters were ligated onto 
fragments, microsatellite-containing fragments were 
separated using biotinylated probes and streptavidin 
beads, and fragments yields were increased using PCR. 
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Fragments were run on a  Roche 454 FLX with Tita-
nium chemistry (454 Life Sciences, a Roche Company, 
Branford, CT) with similarly treated libraries, each with 
combinations of unique adapter and Roche MID-tags. 
We used demuxipy (https://github.com/faircloth-lab/
demuxipy/) to demultiplex fragments, and used a version 
of MSATCOMMANDER [10] to find 591 sequences con-
taining microsatellites from 1467 sequence reads. Primer 
3 [11] was used to design primers with the CAG primer 
sequence (5′-CAGTCGGGCGTCATCA-3′) prepended 
to the 5′  end of one primer of each pair. This enables 
the use of a fluorescently labeled primer with the CAG 
sequence during PCR to tag amplified fragments [12, 13]. 
A short sequence (GTTT) was prepended to the primer 
without the CAG sequence to encourage adenylation of 
the amplicons for accurate genotyping [14, 15].

Fifty primer pairs were tested for amplification and pol-
ymorphism using the DNA from 10 individuals. Ampli-
fications were in 20  µl volumes [250  µg/mL BSA, 10× 
Buffer B (Fisher Scientific), 25 mM MgCl2, 5 µM unlabeled 
primer, 0.5  µM tag labeled primer, 5  µM universal dye-
labeled primer, 2.5 mM dNTPs, 0.5 units Taq DNA poly-
merase (Fisher Scientific), and 20 ng DNA template] using 
a BioRad MyCycler thermal cycler. Touchdown cycling 
conditions were used to amplify DNA and for attachment 
of the universal dye-labeled primer with the CAG tag. 
PCR parameters included an initial denaturation step of 
2 min 30 s at 95 °C then 20 cycles of 95 °C for 20 s, 65 °C 
to 50 °C annealing temperature for 20 s (decreasing 0.5 °C 
per cycle), and extension step of 72  °C for 30  s followed 
by 15 cycles of 95 °C for 20 s, 55 °C to 45 °C for 20 s, and 
72  °C for 30  s. Cycles were followed with a final exten-
sion step of 72  °C for 10 min. An ABI3730XL sequencer 
(Applied Biosystems) was used to determine genotypes. 
We found that fifteen primers amplified a product and 
eight of these primers exhibited polymorphism.

Initially, we tested for polymorphism using ten individ-
uals from seven locations in Alaska including locations 

from the Aleutian Islands, the mainland of Alaska, and 
islands in southeast Alaska. Herein, we report the statis-
tics associated with polymorphic loci using 18–20 indi-
viduals from Fairbanks, Alaska to avoid any Wahlund 
effect caused by population structure [16]. We also tested 
the polymorphism of one to three individuals each for 
seven other species in the family Corvidae (Tables 1, 2) to 
assess cross-species amplification. We used Gene Map-
per software (Applied Biosystems) to score alleles and to 
determine the number of alleles per locus (K), observed 
heterozygosity (Ho), and expected heterozygosity (He), 
using Arlequin ver. 3.5 [17]. We also tested for Hardy–
Weinberg equilibrium and linkage disequilibrium using 
Arlequin and used Microchecker [18] to test for genotyp-
ing errors. We found that the number of alleles per locus 
ranged from 3 to 8, Ho ranged from 0.25 to 0.80, and He 
ranged from 0.30 to 0.80 for common ravens (Table  1). 
All loci were in Hardy–Weinberg equilibrium and link-
age equilibrium after correction for multiple tests and 
we found no evidence of null alleles, stuttering, or large-
allele dropout. 

Preliminary data from nine Alaska populations of com-
mon raven showed that the loci developed in this study 
are useful for population-level assessments with pairwise 
FST values ranging from 0.011 to 0.51. In addition, these 
loci are polymorphic in these populations (He 0.40–0.74; 
alleles per locus, 2.88–6.75). Eight loci that were devel-
oped for other Corvidae have shown polymorphism 
in common raven [19]. By combining our newly devel-
oped markers with those from other taxa, it is possible 
that researchers could assess very fine-scale population 
structure.

In other Corvidae taxa, we found that the majority of 
loci amplified and were polymorphic in six of the seven 
species (Table 2). All loci amplified in the fish crow (Cor-
vus ossifragus) and five of eight loci were polymorphic. 
Loci that were monomorphic in other taxa might be pol-
ymorphic if a larger sample size was assessed. We suggest 

Table 2 Number of alleles in eight microsatellite loci in seven Corvidae species

n number of individuals attempted to amplify and genotype, – individuals failed to amplify at locus

Species n Number of alleles per locus

Coco6 Coco12 Coco30 Coco31 Coco32 Coco36 Coco45 Coco50

Fish crow (Corvus ossifragus) 2 4 1 3 1 3 2 2 1

Northwestern crow (Corvus caurinus) 2 – – 3 1 1 3 3 1

American crow (Corvus brachyrhynchos) 1 – – 2 2 1 2 1 1

Steller’s jay (Cyanocitta stelleri) 3 – – 2 1 – 2 1 3

Blue jay (Cyanocitta cristata) 2 – – 3 2 – 2 1 2

Gray jay (Perisoreus canadensis) 2 – – 3 1 4 1 1 2

Florida scrub-jay (Aphelocoma coerulescens) 3 – – – – – – – –

https://github.com/faircloth-lab/demuxipy/
https://github.com/faircloth-lab/demuxipy/
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that these loci could be successfully used for population-
level assessments in these species (Table 2) and possibly 
in other members of the genera Corvus and Perisoreus 
but are unlikely to be useful in Aphelocoma (Table 2).

Availability of the supporting data
Microsatellite sequences were deposited in the National 
Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov). They are accessible via GenBank accession 
numbers listed in Table 1.
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